
-1-

ASN.1 ENHANCEMENTS TO SUPPORT TACTICAL DATA COMMUNICATIONS

Christopher D. Bonatti

Booz·Allen & Hamilton Inc.

ABSTRACT

This paper presents methods of adapting the upper OSI layers
for enhanced performance in a reduced bandwidth environment,
such as that found in tactical military systems. The paper
describes several techniques for reducing the encoding
overhead imposed by the ASN.1 BER and examines several
existing proposals for alternative encoding rules. The
paper also illustrates the benefits of the new techniques
with complex data structures.

Analytical methods were used to determine the extent of the
ASN.1 BER overhead for complex PDU structures. To provide a
representative level of complexity, various X.400 APDU
structures were used. The BER encoding overhead for an
X.400 message includes tag octets, length octets, and pad
bits for a complete P3 APDU.

As might be expected, the amount of encoding overhead varies
considerably with the size of the message content. For
small message sizes (i.e., fewer than 10,240 octets), such
as those used for tactical C 3, the amount of overhead is at
least 11 percent. For smaller messages the overhead is much
greater. For 5120 octet messages the overhead figure is
approximately 30 percent. For a 2048 octet message, which
is not unreasonable in the tactical environment, the
encoding overhead exceeds 60 percent.

These figures should not be confused with X.400 protocol
overhead, which consists of data carried in protocol fields,
and typically adds 200 to 300 percent overhead to user-
supplied message bodies fewer than 10,240 octets in size.
Intelligent profiling can reduce this figure significantly,
but that is beyond the scope of this paper.

Several techniques can be used to minimize encoding overhead
including: tag and length octet omission, intelligent

-2-

ordering of fields in the abstract syntax, nesting omission,
numeric range adjusting, and bit alignment.

This paper analyses the overhead savings achieved by using
improved encoding techniques. Overhead estimates are given
using the described techniques, including overviews of the
PER, LWER, and MBER proposals. These estimates were derived
using examples of PDUs of varying complexity drawn from the
X.400 base standards.

To promote reduced encoding rules, several actions are
recommended in the standardization community. The PER and
LWER specifications are being progressed as CD 8825-2 and
8825-4, respectively. They should both soon be available in
DIS form. These efforts should be monitored carefully and
actively supported by national standardization bodies. A
proposal incorporating bit alignment, such as MBER, should
be introduced to ISO and considered as a long term solution.

1. INTRODUCTION

This paper examines sources of overhead in OSI *

applications and proposes techniques for minimizing overhead

due to ASN.1 * encoding. Because of the low bandwidth

typically available in tactical C 3* environments, overhead

related to OSI services and protocols is a major concern.

It is possible, however, to adapt the upper OSI layers to

provide enhanced performance in reduced bandwidth

environments.

This paper describes several techniques for reducing

ASN.1 encoding overhead, analyzes the relative performance

of those techniques, and provides an overview of several

* OSI: Open Systems Interconnection

ASN.1: Abstract Syntax Notation One

C3: Command, Control and Communications

-3-

existing proposals that use these techniques in varying

degrees.

2. TECHNICAL BACKGROUND

In the OSI reference model defined by IS * 7498-1 [Ref.

1], the presentation layer is allocated three important

high-level functions. The presentation layer must ensure

that communicating applications agree to common semantics

for any data to be exchanged. The presentation layer is

responsible for ensuring that transmitted information

correctly conveys the agreed end-to-end semantics. The

presentation layer is also responsible for selecting an

optimum mutual transfer syntax for each association.

Two key OSI components that are available to perform

the functions of the presentation layer are the presentation

protocol and ASN.1. The presentation protocol provides

mechanisms for negotiating both the abstract syntax used by

the application and the transfer syntax used between

presentation entities. An abstract syntax is a complex data

structure that organizes information in a manner suitable to

the application. A transfer syntax is the format used to

transfer the application data via the session layer.

Collectively, a particular abstract syntax and transfer

syntax pair is referred to as a presentation context .

The set of presentation contexts supported by each OSI

end system is defined during setup procedures. The

presentation user (i.e., the application layer) specifies a

set of presentation contexts that is supported for a

* IS: International Standard

-4-

particular association. This information allows the

presentation protocol to negotiate a presentation context

that is mutually acceptable for each instance of

communication.

2.1 ASN.1 Overview

Different computer architectures use different internal

representations of information. For the presentation layer

to enable communication between end systems with different

data representations, a conversion function must be

employed. Generally, two architectural options are

available: explicit format conversion and common format

conversion. These options are characterized in Figure 1.

Explicit format conversion employs a different conversion

process for each different machine type it communicates

with. This has the advantage of converting data only once,

but it requires each end system to support conversion to

each different machine format. The common format conversion

approach uses a standardized transfer format and performs

conversion to and from the local machine formats. This has

the advantage of requiring only one type of conversion per

end system, and also eliminates the need for end systems to

have knowledge of the data representation used by a remote

system. These considerations are paramount in an open

systems environment. The only disadvantage to the common

format approach is that two conversions are always applied

to the data, even if two end systems use the same local data

representation.

-5-

Common Agreed
Transfer Format

A

B

C

D

E

A

B

C

D

E

ASN.1

2 n
or

10 conversion types

Explicit Format
Conversion (as necessary)

n (n -1)
or

20 conversion types

A

B

C

D

E

A

B

C

D

E

Figure 1 — Data Representation Conversion Alternatives

The ASN.1 standards, IS 8824 [Ref. 2] and X.208 [Ref.

3], were developed by the ISO * to provide a standardized

method of defining the abstract syntaxes used by

applications in a way that was independent of local data

representation. The ASN.1 allows applications to agree to a

common picture of the data structure, regardless of how the

information is locally stored or processed. The notation

includes provisions for specifying various primitive data

types including boolean values, integer values, bit strings,

octet strings, real values, and enumerated types. It also

* ISO: International Organization For Standardization

-6-

provides mechanisms for defining constructed types,

including several useful type definitions derived from the

primitive data types.

2.2 BER Overview

The original ASN.1 standard was codeveloped with the

BER standards, IS 8825 [Ref. 4] and X.209 [Ref. 5]. These

encoding rules provided a standardized mechanism for

representing complex data structures in a simple data stream

suitable for transmission over a communications channel.

The BER define this transformation by specifying octet-

aligned encoding rules for each data element type in the

abstract syntax. Rules were also given for forming compound

encodings for ASN.1 constructed types.

For primitive data types, each BER encoding element is

composed of three fields: a type identifier, a length

indicator, and content octets. This type-length-value, or

TLV* , structure is common to many data encoding techniques.

The structure of a BER encoded type is shown in Figure 2.

Constructed data types may also be encoded using the

TLV form, or they may use an indefinite length form. The

indefinite length form uses a repeated "End of Content"

octet to delineate the end of the encoding. Indefinite

length encodings are particularly useful when data

transmission must begin before the total content length is

known.

* TLV: Type Length Value

-7-

IDENTIFIER OCTET(S) LENGTH OCTET(S) (N) CONTENT OCTETS ...

Binary Encoded
Number of

Content Octets
(N)

Figure 2 — Structure of BER Elements

The type identifier field contains an integer tag

value, a 2-bit subfield that indicates the semantics of that

value, and a 1-bit flag that indicates whether the type is

primitive or constructed. There is no limit to the

magnitude of the tag value that can be encoded in the type

identifier field, but tag values less than or equal to 30

have the advantage of being encoded in a single octet. The

four possible values of the 2-bit subfield each indicate one

of the following classes for the tag value: universal,

application, context-specific, or private. The universal

class is composed of tag types defined in the ASN.1 base

standard. Application tag types are those defined in other

international standards. Context-specific tags are defined

in a particular instance of abstract syntax and have no

meaning outside that particular data structure. Private tag

types are defined for a particular enterprise or

implementation, and are never assigned within international

standards.

Unlike the type identifier field, the length indicator

field cannot accommodate an arbitrarily large value.

-8-

However, the maximum content length is so large as to be

considered virtually infinite.

2.3 ASN.1 in an X.400 Context

The CCITT * X.400 [Ref. 6] and IS 10021 [Ref. 7] base

standards use ASN.1 extensively for abstract syntax

definition. Three major application layer protocols, P1,

P3, and P7, are specified as exchanges of abstract syntax

defined in ASN.1. The three content type structures defined

in the base standards (i.e., P22, PEDI, and VMP *) are also

specified using ASN.1. The structure of X.400 PDUs * is

shown in Figure 3.

Although the protocol specifications of X.419 [Ref. 8]

and IS 10021-6 [Ref. 9] avoid any mention of encoding rules

for P1, P3, and P7, the definitions of the standard content

types in X.420 [Ref. 10] and IS 10021-7 [Ref. 11]

specifically require the use of BER. Because the

negotiation of coding rules does not take place between two

X.400 UAs * , the standards must specify the encoding of

content types to ensure interoperability. As a consequence

of this arrangement, some X.400 implementors have chosen to

hard code the format of content types even when their

protocol engine uses a more general purpose ASN.1 encoder.

* CCITT: International Telegraph and Telephone Consultative

 Committee

VMP: Voice Messaging Protocol

PDU: Protocol Data Unit

UA: User Agent

-9-

Envelope (P1, P3, or P7)

Content

Heading

Body Part
Body Part

Body Part

Body

Abstract Syntax Specified in ASN.1
Encoding Rules Selected By Presentation Layer

Usually Identified By An ASN.1 OBJECT IDENTIFIER
Always Encoded Using BER

Abstract Syntax Specified in ASN.1
Always Encoded Using BER

Usually Identified By An ASN.1 OBJECT IDENTIFIER
Encoding Of Standardized Body Parts Is BER
Encoding External Body Parts Is Undefined

Figure 3 — Structure of X.400 PDUs

2.4 Recent Developments

The ISO has recently completed DIS * versions of revised

ASN.1 and encoding rule standards. The new ASN.1 standard

consists of multiple parts. Basic descriptions of the ASN.1

notation and guidelines about how to apply it are now

covered in DIS 8824-1 [Ref. 12]. The three new parts, DIS

8824-2, DIS 8824-3, and DIS 8824-4 [Refs. 13, 14, and 15],

provide mechanisms for defining object classes, exception

values, and parameterization that are intended to replace

the MACRO notation used in the second edition of IS 8824.

The new DIS version also reduces the possibility of

syntactic ambiguity by eliminating the ANY and ANY DEFINED

* DIS: Draft International Standard

-10-

BY types and by making identifiers mandatory in SEQUENCE,

SET, and CHOICE types.

The ASN.1 encoding rules standard has likewise been

rewritten as a multipart document. The existing BER are now

specified in DIS 8825-1 [Ref. 16]. The series has been

extended to incorporate new alternative encoding rules. The

new DIS 8825-3 [Ref. 17] defines DER * that use a TLV format

that is similar to BER, but which eliminates the many

alternative encodings that are possible with BER. The DER

is useful in cases, such as cryptography, where

independently generated encodings must be identical. The

PER* are defined by CD * 8825-2 [Ref. 18] to provide a more

compact form of TLV encoding that is faster to process. The

WD* 8825-4 [Ref. 19] defines non-TLV LWER * that are much

faster to process because they are designed to generate

encodings similar to commonly used local storage formats.

Both PER and LWER are expected to reach DIS status in the

near future.

The set of different encoding types is intended to be

open ended, and will therefore likely expand in the future.

The civil aeronautical community has already proposed one

such standard called MBER * [Ref. 20]. The presentation

layer protocol is capable of ensuring continued

interoperability as long as one common set of encoding rules

* DER: Distinguished Encoding Rules

PER: Packed Encoding Rules

CD: Committee Draft

WD: Working Draft

LWER: Light Weight Encoding Rules

MBER: Minimum Bit Encoding Rules

-11-

is universally implemented. For this reason, it is

important that all future ASN.1 encoders continue to support

BER.

3. OVERHEAD EXTENT

In developing OSI protocols for tactical use, there is

a great concern regarding the large amount of overhead

imposed by OSI. For OSI application protocols, this

overhead consists of two different types: protocol overhead

and encoding overhead. Reduction of both types of overhead

is necessary to reduce application bandwidth requirements.

However, the techniques for reducing the two types of

overhead are quite different.

To examine the impact of these types of overhead, it is

necessary to focus on specific protocols. It is unclear

whether a "typical" OSI application exists. Yet, it is

certain that particular OSI applications will be used in

both strategic and tactical environments. The X.400 Message

Handling System is one such application. Therefore, it is

appropriate to examine the impact of overhead on the

transfer of X.400 APDUs * . Where message content is

considered, this paper will consider the IPMS * content type.

To analyze the overhead X.400 PDUs, it is first

necessary to define the characteristics of the average

message that will be sent. The makeup of this average

message is determined based on a variety of sources. The

message body size and subject field size were based on a

* APDU: Application Protocol Data Unit

IPMS: Interpersonal Messaging System

-12-

statistical analysis of 1,000 randomly selected SMTP *

messages. Although these messages do not accurately reflect

use of the X.400 fields, they are believed to accurately

represent user content requirements for character-oriented

messages in an strategic environment. Statistics for the

sample messages are shown in Table 1. These figures were

used in lieu of any tactical statistics because no

population was felt to be characteristic of the projected

tactical messaging environment. The sensitivity ,

importance , and languages fields of the IPM heading were

assumed to be unused for this analysis.

Table 1

Sample Message Content Statistics

Statistical Quantity Body Size

(octets)

Subject

Length

(octets)

Aggregate Size 2,058,015 38,121

Mean Size 2058 38

Standard Deviation 4991 42

Minimum 0 0

Maximum 41,973 121

Median 803 22

Note that for both the Body Size and Subject Length

columns, the minimum value recorded was zero. Because it is

assumed that a tacical message will always contain some user

* SMTP: Simple Mail Transfer Protocol

-13-

data, further calculations will assume an arbitrary minimum

user data size of 20 octets.

Two approaches were used to evaluate the impact of

X.400 service selection on overhead:

(a) A min-max approach was used to determine
the service selections that would yield the
worst and best overhead results.

(b) Typical values were determined for each
field based on assumptions about the
tactical environment.

No security services were considered for the purposes of

this investigation.

3.1 Protocol Overhead

Protocol overhead is composed of any additional

information that is transferred for the purpose of

supporting the services provided by an application. This

generally includes any data elements that are exchanged

between application entities that are not input by the user.

It excludes any user data that are conveyed by the protocol.

Protocol overhead also excludes any overhead incurred during

encoding.

It can be difficult to determine what data elements

should be included in a measurement of protocol overhead.

For example, addressing fields are usually supplied by the

user, but they are clearly integral components of the

protocol and are rarely tightly coupled to the data being

transferred.

-14-

In X.400 terms, protocol overhead includes all protocol

elements in the P1, P3, and P7 envelopes, with the exception

of the message content. Within the content itself,

determining which elements contribute to overhead is much

more difficult. Although all IPMS heading fields provide

information to the recipient UA, many of these fields

support functions that are unique to IPMS. Generally, these

fields should be included in the protocol overhead. Only

those fields that convey user information that qualifies the

meaning of the body should be excluded. By these criteria,

the following fields should be considered as user data:

(a) subject (conveys a brief summary of the
body)

(b) importance (conveys the precedence or
priority of the body)

(c) sensitivity (conveys a rudimentary security
label for the body)

(d) languages (identifies the languages used in
composition of the heading and body).

A study of the protocol overhead for X.400 PDUs

revealed that, for the assumed average message previously

described, the typical protocol overhead for a P3 PDU was

351.1 percent. This overhead excludes any additional

overhead added by ASN.1 encoding. A summary of all protocol

overhead is shown in Tables 2 and 3.

-15-

Table 2

Summary of Computed Protocol Overhead

Sample Set User Data

(octets)

P22 Heading

Overhead

(octets)

P3 Envelope

Overhead

(octets)

Minimum 20 22 45

Maximum 42,094 12,649 20,131

Typical 2096 2837 4521

Table 3

Percentage of Protocol Overhead

Overhead

Category

Minimum User

Data (%)

Typical User

Data (%)

Maximum User

Data (%)

Minimum 335.0 3.2 0.2

Typical 367.9 351.1 17.5

Maximum 163,900.0 1563.9 77.9

Clearly, this degree of overhead is excessive. However, it

is expected that this overhead can be greatly reduced by

applying restrictive profiling to limit what protocol fields

may be used.

3.2 Encoding Overhead

A significant portion of any ASN.1 encoded PDU is

occupied by overhead bits, such as tag values, length

octets, and pad bits. By determining the extent of the

-16-

overhead and better understanding its causes, it may be

possible to minimize its effects by developing better

encoding rules.

Encoding overhead for BER can take three forms.

Specifically, these forms are as follows:

(a) Identifier Octets
(b) Length Octets
(c) Inefficient Storage of Data Values.

Examples of these forms are shown in Figure 4.

IntegerField ::= INTEGER 21

ASN.1 Syntax and Value

Hexidecimal Encoding

Binary Encoding

02 01 15

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1

User Defined
Content
(5 bits)

Encoding Overhead
(19 bits = 380% OH)

Figure 4 — Sources of Encoding Overhead

The number of identifier octets for each field is easy

to determine. If the tag value is between 0 and 30, as are

-17-

most tags, then only one identifier octet is used. If the

tag value is between 30 and 16,383, then three tag octets

are used. Tag values above 16,383 are seldom encountered

but would require commensurately more octets.

The number of length octets used for an encoding obeys

a different relationship. Fields whose content is between 0

and 127 octets in length, carry only one length octet.

Content lengths between 128 and 255 require two content

octets. Three content octets are able to encode content

between 256 and 65,535 octets in length. Each additional

length octet increases the potential size of the content by

a factor of 256.

Inefficient storage of data values is a less obvious

source of encoding overhead. All values encoded with BER

occupy a whole number of octets. Therefore, a BOOLEAN field

always incurs 7 bits of encoding overhead. A field of type

BIT STRING incurs varying amounts of overhead depending on

the length of the bit string in question. A 7-bit string

incurs less overhead than a 4-bit string. Note that BIT

STRING encodings always incur an additional octet of

overhead because an integer value containing the number of

unused bits is always appended to the beginning of the

content. An INTEGER field incurs a varying amount of

overhead depending on the range of values the field is

intended to hold. For example, if the abstract syntax

specifies an INTEGER field to contain a value between 99 and

101, then the value can be unambiguously encoded using 2

bits. Using BER, an entire octet is necessary. A similar

problem occurs with REAL values, except the amount of

overhead also varies with the degree of accuracy required.

-18-

In the X.400 PDUs, encoding overhead was determined

analytically based on an assumed average message. The

results of the analysis showed a significant amount of

overhead attributable to BER encoding. For the typical

X.400 message characterized above, the approximate encoding

overhead for a P3 APDU was 19.7 percent. As message sizes

decrease, however, the encoding overhead becomes far more

significant because the number of overhead octets is

relatively independent from the size of the body. A summary

of the overhead figures is shown in Table 4.

Table 4

Summary of Computed Encoding Overhead

Sample Set

Content

Size*

(octets)

P3 Encoding

Overhead

(octets)

Minimum 452 67

Maximum 55,155 2522

Typical 5345 1054

* = Includes protocol and encoding

overhead from P22 heading

Examination of the intersections among these relatively

independent figures is enlightening. As Table 5 and Figure

5 show, the extent of encoding overhead becomes formidable

for small messages. For large message sizes, the extent of

the overhead is insignificant.

-19-

Table 5

Percentage of Encoding Overhead

Overhead

Category

Minimum User

Data (%)

Typical User

Data (%)

Maximum User

Data (%)

Minimum 14.8 1.3 0.1

Typical 233.2 19.7 1.9

Maximum 558.0 47.2 4.6

Content Size (octets)

%

O
v
e
r
h
e
a
d

0

10

20

30

40

50

60

70

512 1024 1536 2048 2560 3072 3584 4096 4608 5120

Figure 5 — Encoding Overhead for Small Messages

4. ENCODING OVERHEAD REDUCTION TECHNIQUES

The extent of the overhead imposed by the X.400

protocols and ASN.1 encoding rules illustrates the need for

-20-

mechanisms to reduce overhead. Several techniques exist to

reduce the demands of OSI applications on the communications

stack. Intelligent profiling can be used to limit the

extent and variability of protocol overhead. In addition,

data compression techniques could be employed at the

presentation layer to reduce the overall size of the PDUs.

To reduce encoding overhead, a more efficient set of

encoding rules than BER must be adopted. This section

focuses on techniques that reduce the size of ASN.1

encodings.

4.1 Tag Omission

Tag values may seem to be a vital part of the encoding,

but in fact they are frequently not necessary. Because both

sending and receiving parties are aware of the original

abstract syntax, the type and identity of a particular

element can often be inferred. This makes the identifier

octets unnecessary in many circumstances. To achieve this

type of operation, it is necessary to have clear rules for

when tags should be omitted.

The rules for identifier octets must require tags in

several circumstances. If an encoding is a SET construct,

then the order of the elements cannot be inferred from the

abstract syntax. Similarly, if the syntax includes a CHOICE

field, the type of the element cannot be inferred. The

presence of any OPTIONAL or DEFAULT fields in the syntax can

cause ambiguity in the ordering of the elements; therefore

identifier octets should always be included for these

fields.

-21-

4.2 Length Code Omission

Length octets frequently can be omitted from encodings

when the length of the element can be inferred from the

abstract syntax. Any BOOLEAN, ENUMERATED, or bounded

INTEGER field has an implicit length based on the abstract

syntax. For example, the following syntax defines a field

whose encoding has an implicit length in octets.

SampleElement ::= SEQUENCE {

field1 INTEGER (0..15),

field2 INTEGER

(low (0), medium (1), high (2)) }

The first field of the SEQUENCE is limited to a 4-bit value.

The second field can always be represented by 2 bits. The

length of both fields, therefore, can be inferred as 1

octet.

4.3 Elimination Of Nesting

Many OSI applications define their abstract syntax

using many layers of nested element definitions. In some

cases, the nesting is necessary to adequately describe the

data to be transferred; in other cases, the nesting adds

clarity for implementors. Excessive nesting, however, has a

negative effect on the encoding overhead.

Often, it is possible to omit levels of nesting during

encoding. Most uses of the SEQUENCE construct can be

ignored during encoding without introducing ambiguity.

-22-

4.4 Numeric Range Adjustment

Values that are limited to a minimum value greater than

zero can often be reduced to a zero-aligned value during

encoding. This technique can save considerable encoding

overhead under the right circumstances. For example, the

following syntax defines a field that is not zero-aligned.

SerialNumber ::= INTEGER (100502000..100503000)

In such a case, BER would require 4 octets to encode the

serial number (plus another 2 for identifier and length

octets). By adjusting the apparent range to (0..1000) for

purposes of encoding, the value can instead be encoded in 2

octets. This technique is an application of a limited form

of finite set data compression.

4.5 Bit Alignment

The BER incur a significant amount of encoding overhead

by maintaining octet alignment for every encoding. To

minimize this overhead, it is possible to ignore octet

boundaries and encode data values using only the number of

bits they require. For example, examine the following

syntax.

SampleElement ::= SEQUENCE {

field1 INTEGER (0..15),

field2 INTEGER

(low (0), medium (1), high (2)),

field3 INTEGER (1..32) }

-23-

Using octet alignment, the encoding of this syntax requires

twice as much space as with bit alignment.

Certain fields, such as OCTET STRING and BIT STRING,

tend to gain little and lose much with bit alignment.

Because they usually have large data values, strings do not

benefit as much from an overhead savings of less than 7

bits. Also, OCTET STRINGS and other character-oriented

strings need to be octet aligned for local processing. Pad

bits, therefore, should be used to octet align such strings.

For bit alignment to be fully effective, it is

necessary to specify how certain fields should be aligned.

Unfortunately, there is not a suitable construct for this in

the current ASN.1 abstract syntax rules. Such a construct

should be added to the base standard. In the future,

abstract syntax definitions should be written under the

assumption that their encodings may be bit aligned.

4.6 Element Reordering

After reviewing the above techniques, it should be

clear that many of these methods yield overhead savings only

under the right circumstances. One way to improve the

performance of these techniques is to reorder the ASN.1

fields before encoding to improve the likelihood of overhead

savings. To do so, it is vital that the reordering

algorithm be deterministic so that the other end systems can

also determine the correct element order for decoding.

In particular, this approach can benefit the bit

alignment technique. By grouping all string types together

-24-

in the encoding, the overhead of needless pad bits is

avoided.

5. REDUCTION BENEFIT

To assess the quantitative impact of these techniques

on real PDUs, the X.400 APDUs examined in Section 3 were re-

analyzed using the improved encoding techniques. The

results of this new analysis are shown in Table 6.

Table 6

Overhead Using Modified Encoding Rules

Overhead

Category

BER

Overhead

(octets)

Modified

Overhead

(octets)

Overhead

Reduction

(%)

Minimum 67 62 7.5

Maximum 2522 1311 48.0

Typical 1054 726 31.1

In many instances, the techniques could not be applied

because of the limitations of the X.400 abstract syntax.

For example, the X.400 abstract syntax makes frequent use of

the SET construct, thus limiting the benefit of tag

omission. If these techniques were applied to new OSI

applications written with encoding efficiency in mind, much

greater overhead savings could be achieved.

-25-

6. EXISTING ENCODING RULE PROPOSALS

Several proposals for alternative encoding rules — in

addition to DER, which has already reached DIS status — are

currently progressing through ISO. Key among these is the

specification for PER, which is designed to reduce encoding

sizes. Another proposed set of encoding rules is LWER,

which is designed to optimize the speed with which encodings

can be processed. A former proposal, which has been largely

subsumed by PER, is the MBER. MBER offers some unique

features and ideas that are still worth promoting.

6.1 Packed Encoding Rules

The premise of PER is to provide a standard set of

encoding rules that will minimize the size of the resulting

encodings. The PER are identified by a single new transfer

syntax object identifier, which can be used for negotiation

via the presentation protocol.

The PER specifications are essentially an octet-aligned

TLV encoding scheme, although the type and length

identifiers frequently are omitted. The coding scheme uses

many of the techniques described in Section 4, including:

(a) Tag Omission
(b) Length Code Omission
(c) Numeric Range Adjustment.

The PER standard recommends against use of the SET construct

and OPTIONAL fields in abstract syntax definitions. It also

defines when the various encoding forms (i.e., short

definite, long definite, and indefinite) shall be used. The

-26-

PER specifies that, when indefinite encodings are used, the

end-of-contents octets shall be dropped whenever the length

can be determined from the syntax.

Another concept introduced in PER is BIT STRING

packing. This rule specifies that, whenever a construct is

composed only of BIT STRING and LOGICAL fields whose tag,

length, and unused bit values are not necessary, the data

values shall be concatenated at the bit level for maximum

packing efficiency. Note that this is only possible for

fixed length fields.

Although the PER implementations will be capable of

generating smaller encodings of ASN.1 abstract syntax, the

improved overhead performance is not without cost. The

rules that make up PER are complex compared to BER and,

therefore, are likely to require greater processing

resources in implementations.

6.2 Light Weight Encoding Rules

The LWER is designed to maximize the processing speed

of the encoder at the expense of flexibility, extensibility,

and compactness. It does so by defining the transfer syntax

to match the local representation format as closely as

possible. To this end, LWER defines six new transfer

syntaxes that cover a broad spectrum of representation

formats. These syntaxes define rules with varying word

sizes and octet ordering schemes. Maximum processing speed

usually will be achieved when both end systems are operating

in their "native" context.

-27-

The LWER encodes data types similarly to the way they

are stored on many computer systems. Most primitive types,

such as INTEGER, REAL, ENUMERATED, and BOOLEAN, are encoded

as fixed-length fields of one word. The number of octets in

the word depends upon the transfer syntax agreed during

connection establishment. String fields, such as BIT STRING

and OCTET STRING, are encoded as a length code and a

pointer. The pointer value indicates the position of the

string data later in the encoding sequence. Tag values are

never included in LWER encodings.

Use of LWER will generally increase the encoding

overhead significantly. This approach has merit in high-

speed applications where bandwidth is plentiful, or where

processing resources are extremely limited. This latter

case may apply to some tactical scenarios (e.g., man-pack

SATCOM*).

6.3 Minimum Bit Encoding Rules

The MBER proposal was originated by the civil

aeronautical community. Many of the aeronautical

requirements behind the proposal are held in common with the

tactical environment. Although its aim is similar to that

of PER, its approach is more aggressive.

In addition to specifying many of the same techniques

as PER, MBER employs bit alignment to further reduce the

size of resulting encodings. To support this encoding form,

the proposal suggests a new ALIGN constraint for the ASN.1

notation. This constraint would allow abstract syntax

* SATCOM: Satellite Communications

-28-

developers to specify particular alignment requirements

(e.g., octet alignment, dibit alignment) for any field.

The MBER proposal offers significantly lower encoding

overhead than PER, yet it seems to have been subsumed by the

PER development within ISO. Although the specifics of MBER

are not sacred, the tactical community should strongly

encourage and support the development of some type of bit

aligned encoding rules.

7. CONCLUSION

This paper has demonstrated that the ASN.1 BER encoding

overhead is significant, and it can be reduced through

application of alternate encoding rules. The percentage of

encoding overhead increases dramatically as message sizes

decrease. This makes encoding overhead a serious concern

for the tactical environment, where many messages are

expected to be small and highly perishable.

To promote reduced encoding rules, several actions are

called for in the standardization community. Specifications

for PER, which are being progressed as CD 8825-2, should

soon be available in DIS form. These encoding rules would

offer significant bandwidth savings over BER. The PER

effort should be monitored carefully and actively supported

by national standardization bodies. A proposal

incorporating bit alignment, such as MBER, should be

introduced to ISO and considered as a long-term solution.

-29-

REFERENCES

1. ISO/IEC: CD 7498-1, Open Systems Interconnection -
Basic Reference Model, November 1991 (unclassified)

2. ISO/IEC: IS 8824, Information Technology - Open Systems
Interconnection - Specification of Abstract Syntax
Notation One (ASN.1), second edition, 15 December 1990
(unclassified)

3. CCITT: X.208, Specification of Abstract Syntax Notation
One (ASN.1), 1988, (unclassified)

4. ISO/IEC: IS 8825, Information Technology - Open Systems
Interconnection - Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1), second
edition, 15 December 1990 (unclassified)

5. CCITT: X.209, Specification of Basic Encoding Rules For
Abstract Syntax Notation One (ASN.1), 1988
(unclassified)

6. CCITT: X.400, Message Handling, System and Service
Overview, 1988 (unclassified)

7. ISO/IEC: IS 10021, Information Technology - Text
Communication - Message-Oriented Text Interchange System
(MOTIS), first edition, December 1990 (unclassified)

8. CCITT: X.419, Message Handling Systems, Protocol
Specifications, 1988 (unclassified)

9. ISO/IEC: IS 10021-6, Information Technology - Text
Communication - Message-Oriented Text Interchange System
(MOTIS) - Part 6: Protocol Specifications, first
edition, December 1990 (unclassified)

10. CCITT: X.420, Message Handling Systems, Interpersonal
Messaging System, 1988 (unclassified)

11. ISO/IEC: IS 10021-7, Information Technology - Text
Communication - Message-Oriented Text Interchange System
(MOTIS) - Part 7: Interpersonal Messaging System, first
edition, December 1990 (unclassified)

-30-

12. ISO/IEC: DIS 8824-1, Information Technology - Open
Systems Interconnection - Abstract Syntax Notation One
(ASN.1) - Part 1: Specification of Basic Notation, 8
October 1992 (unclassified)

13. ISO/IEC: DIS 8824-2, Information Technology - Open
Systems Interconnection - Abstract Syntax Notation One
(ASN.1) - Part 2: Information Object Notation, 8 October
1992 (unclassified)

14. ISO/IEC: DIS 8824-3, Information Technology - Open
Systems Interconnection - Abstract Syntax Notation One
(ASN.1) - Part 3: Constraint Specification, 8 October
1992 (unclassified)

15. ISO/IEC: DIS 8824-4, Information Technology - Open
Systems Interconnection - Abstract Syntax Notation One
(ASN.1) - Part 4: Parameterization of ASN.1
Specifications, 8 October 1992 (unclassified)

16. ISO/IEC: DIS 8825-1, Information Technology - Open
Systems Interconnection - Specification of ASN.1
Encoding Rules - Part 1: Basic Encoding Rules, 8 October
1992 (unclassified)

17. ISO/IEC: CD 8825-2, Information Technology - Open
Systems Interconnection - Specification of ASN.1
Encoding Rules - Part 2: Packed Encoding Rules, July
1991 (unclassified)

18. ISO/IEC: DIS 8825-3, Information Technology - Open
Systems Interconnection - Specification of ASN.1
Encoding Rules - Part 3: Distinguished Canonical
Encoding Rules, 8 October 1992 (unclassified)

19. ISO/IEC: WD 8825-4, Information Technology - Open
Systems Interconnection - Specification of ASN.1
Encoding Rules - Part 4: Light Weight Encoding Rules
(unclassified)

20. D. Blum, R. Rice: Minimum Encoding Rules (MBER) for the
Abstract Syntax Notation (ASN.1), 4 April 1990
(unclassified)

